Goal: Trimodal Representation Learning

Molecular object has multimodality (sequence, graph, and structure), while often labels often correspond with unimodal data. For example, protein property data usually contain protein sequences but their structure are usually unknown. To distill unapproachable high-order information to the low-order approachable modality, bimodal contrastive pretraining could be a good choice. Considering 1D/2D/3D nature of molecular data, molecular pretraining must contrast three modalities - however, contrast on trimodality has rarely been discussed. Here, we propose geometryaware contrastive framework - Triangular Contrastive Learning, which minimize and maximize the areas of Triangles, instead of pairwise distances.
Observations on Trimodal Embedding Space
Alignment and Uniformity

- Alignment: Positive pairs are mapped closely in the embedding space.

Uniformity: Embeddings are uniformly distributed, preserving as much information as possible.
Transformation of embedding spaces.
Intramodal - 'hypersphere': distributes the embedding space Intermodal - 'line': compresses the embedding space Joint Joint intra- and intermodal: 'cones
Triangle Area Loss - 'angular diversified cones'

 intermodal loss: 'line' (d) NT-Xent as intaza- and intermodal 'oss: 'cone' (e) Triangle Area Losss
as intramodal Ioss: 'cone:' Angles within the space and angles bewwent them are not to scale.

TriCL: Triangular Contrastive Learning TriCL Framework

Geometry-aware Triangular Area Loss
Triangular Area Loss for inter-model contrastive learning.
$\mathcal{L}_{\text {inter }}=\underbrace{\mathbb{E}\left[\operatorname{Area}\left(\mathbf{z}_{i}^{\text {main }}, \mathbf{z}_{j}^{\text {aux } 1}, \mathbf{z}_{k}^{\text {aux }}\right)^{2} \mid \mathbf{P}\right]}-\underbrace{\mathbb{E}\left[\operatorname{Area}\left(\mathbf{z}_{i}^{\text {main }}, \mathbf{z}_{j}^{\text {aux }}, \mathbf{z}_{k}^{\text {aux } 2}\right)^{2} \mid \mathbf{N}\right]}$

$$
\text { intermodal alignment } \quad \underbrace{}_{\text {intermodal uniformity }}
$$

For intra-modal contrastive learning, we use pairwise NT-Xent loss,

$$
\mathcal{L}_{\text {intra }}^{\text {enc }}=\frac{1}{2 B} \sum_{k=1}^{B}(\ell(2 k-1,2 k)+\ell(2 k, 2 k-1))
$$

$$
\ell(i, j)=\underbrace{-\frac{1}{n \tau} \sum_{i, j}^{\operatorname{sim}\left(z_{i}^{\text {enc }}, z_{j}^{\text {enc }}\right)}+\underbrace{\frac{1}{n} \sum_{i}^{\log } \sum_{k=1}^{2 n} \mathbb{1}_{k \neq i} \exp \left(\operatorname{sim}\left(z_{i}^{\text {enc }}, z_{k}^{\text {enc }}\right) / \tau\right)}_{\text {intramodal uniformity }}}_{\text {intramodal alignment }}
$$

Then TriCL optimizes: $\mathcal{L}=\lambda_{\text {intra }}^{\text {main }} \mathcal{L}_{\text {intra }}^{\text {main }}+\mathcal{L}_{\text {intra }}^{\text {aux1 }}+\mathcal{L}_{\text {intra }}^{\text {aux } 2}+\lambda_{\text {inter }} \mathcal{L}_{\text {inter }}$

[^0]Molecular Property Prediction (MoleculeNet)

Pre-training	BBBP	Tor21	ToxCast	SIDER	ClinTox	muv	Hiv	BACE	Avg
-	$65.42 .2 .4)$	$74.9(0.8)$	61.6(1.2)	58.02.4)	58.8(5.5)	71.0(2.5)	75.30.5)	72.64.9)	67.21
Edgepred	$64.5(3.1)$	74.50.4)	60.80.5)	56.70.1)	55.8(6.2)	73.31.1.6)	75.10.8)	64.64.7)	6.64
${ }^{\text {Atrrasas }}$	70205	74.20.8)	${ }^{62.50 .4} \mathbf{6}$	60.40.6)	68.69	${ }^{73.9(1.3)}$	74.31	77.2(1.4)	${ }^{7} 0.16$
Cipronv	(1.1)		${ }_{6}^{62.50 .4} \mathbf{6}$			${ }_{7}^{73} \mathbf{7}$	${ }_{7}^{74.3}$		
Intocraph Conextred ded	20.8)			S9.3.1.4)					
	67.8	73.00.3)	$62.20 .4)$	$57.42 .23)$	${ }_{62.01 .8)}$	${ }^{73.11 .17)}$	73.40.0)	${ }_{78.8}^{78}$	68.47
G-Motif	$66.43 .4)$	73.20.8)	62.60.5)	$60.61 .1)$	$77.82(2$.	73.3.2.0)	${ }^{73.81 .4}$)	73.44.0)	70.14
CraphCL	${ }_{6}^{66.50 .30 .3)}$	${ }_{7}^{74.000 .3)}$		${ }_{\text {cole }}^{60.1(1.3)}$	$78.9(4.2)$ $66(39)$	${ }_{77}^{77.1(1.02)}$	${ }_{766005}^{75.00 .4)}$	${ }_{7}^{68.77(8)}$	${ }_{69} 70.64$
GraphMVP-C	72.41.0)	0.2)	1(0.4)	63.9 (12)	$77.5(4.2)$	75.0(1.0)	$77.0(1.2)$	$81.20 .9)$	73.07
Tricl(OURS)	72.40.4)	75.50.3)	63.90.4)	62.01.0)	85.4(1.9)	77.00.8)	78.90.5)	82.5(1.2)	74.71

Table 1. Results on the molecular property prediction classification tasks. We report an average test AUC-ROC on 8
downstream tasks with standard deviation inside the parenthesis. Too 1 AUC-ROC score for each task is underined

Ligand/Decoy Discrimination (GPCR) Embedding space assessment using GPCR active / decoy examples

	GPCR active compounds			Target Instances (Alignment)				
	\| Align	Uniform	Combined	AA2AR	ADRB	ADRB2	CXCR4	DRD3
GNN (Unimodal CL)	0.574	0.546	0.028	0.317	0.324			0.388
TricL	0.602	0.316	0.286	0.299	0.368	0.384	0.381	0.458

 between $\operatorname{CPCCR-\text {-ter}}$ (higher is beter).

References

Chen et. al. (2020). "A Simple Framework for Contrastive Learning of Visual Representations." "ICML2020 Radiord et. al. (2021). "Learning Transerable Visual Models From Natural Language Supervision.". ICMLL202
Liu et. al. (2021). "Pre-training Molecular Graph Representation with 3D Geometry". ICIR2022

[^0]: Figure 3.Comparison with previuus trimodal models. (a) HyCon uses paimise contrastive learning with two auxiliar
 modalities, but fine-tune al three models on downstream tasks. (b) MMIM generarates a unfifed reperesentation via paiwise

