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Abstract

Clinical time series imputation presents a significant challenge because it requires
capturing the underlying temporal dynamics from partially observed time series
data input. Among the recent successes of imputation methods based on gen-
erative models, the information bottleneck (IB) framework offers a well-suited
theoretical foundation for multiple imputations, allowing us to account for the
uncertainty associated with the imputed values. However, direct application of
IB framework to time series data without considering temporal context can lead
to a substantial loss of temporal dependencies, which, in turn, can degrade the
overall imputation performance and further clinical decisions. To address such a
challenge, we propose a novel conditional information bottleneck (CIB) approach
for time series imputation.Variational decomposition of CIB motivates us to de-
velop a novel deep learning method that can approximately achieve the proposed
CIB objective for time series imputation as a combination of evidence lower bound
and novel temporal kernel-enhanced contrastive optimization. Our experiments,
conducted on real-world healthcare dataset and image sequences, demonstrate that
our method significantly improves imputation performance, and also enhances
prediction performance based on the imputed values.

1 Introduction

Clinical multivariate time series data often includes missing features, with diverse missing ratios and
patterns depending on distinct sampling periods or measurement strategies [6]. Since these missing
features can significantly impair the medical decisions and comprehension of the temporal dynamics,
time series imputation, aiming to reconstruct the missing features, has become a pivotal and pervasive
topic in healthcare. What makes time series imputation challenging is that an imputation method must
satisfy two requirements: i) it must account for underlying temporal dependencies, and ii) it should
allow for multiple imputations to facilitate uncertainty quantification for real-world decision-making.

Generative models, particularly variational autoencoders (VAEs)[8], have been employed in the
context of multiple imputation tasks due to their capability to generate samples in a probabilistic
manner. VAE-based imputation methods primarily focus on defining the evidence lower bound, where
the reconstruction error is computed only over the observed part of the incomplete data [10, 16]. These
methods can be naturally interpreted under the information bottleneck (IB) principle [18], providing an
information-theoretic understanding of what constitutes an imputation-relevant representation. This
understanding is based on the fundamental trade-off between maintaining a concise representation
(i.e., regularization) and preserving good representation power (i.e., reconstruction).[19]

However, a direct application of the IB principle to time series imputation struggles with capturing
the underlying temporal dependencies, as shown in our motivating examples on intrapolation and
extrapolation (Figure 1B). In this paper, we theoretically analyze that the overly strict regularization

∗Work performed while at Chung-Ang University.

1st Workshop on Deep Generative Models for Health at NeurIPS 2023.



H(Xo
t )

H(Xt)

H(Xo
∖t) H(Xo

t ) H(Xo
∖t)

H(Xt)

IB CIB (Ours)

Minimize

Maximize

Interpolation Extrapolation

Ground Truth

Input

CIB (Ours)

IB (GP-VAE)

IB (HI-VAE)

(A) (B)

Figure 1: (A) Conceptual illustration of the IB and CIB principles. By conditioning regularization on
the remaining input time steps, the latent representation can better preserve the underlying temporal
dependency. (B) Motivating experimental results on interpolation (left) and extrapolation (right).
Because features in a single time step are completely missing, a model must collect information from
other time steps. The conventional IB approach (HI-VAE) shows deteriorating performance in both
cases. Another IB approach (GP-VAE) using a Gaussian process prior demonstrates enhanced perfor-
mance for interpolation but often significantly loses time series characteristics for extrapolation (i.e.,
the writing style is corrupted). The CIB approach (Ours) exhibits improved imputation performance
for both cases.

in the conventional IB may force the encoder to rely solely on the particular time point. To overcome
such an issue, we propose a novel conditional information bottleneck (CIB) framework for time series
imputation. Our framework adopts the reconstruction-regularization structure of the IB principle
while preserving temporal information through conditional regularization, allowing us to circumvent
the strict regularization constraints of the conventional IB. Throughout the experiments conducted
on healthcare-inspired image sequences and electrical health records (EHR), our proposed method
consistently outperforms the state-of-the-art imputation methods with respect to both imputation
performance and prediction performance based on the imputed values.

2 Method

2.1 Information Bottleneck Approach to Imputation

We begin with formally define the general imputation task from an information-theoretic perspective.
For formal description on information bottleneck on supervised task, please refer to Appendix A.
Definition 1. (Imputation) Let Xo and Xm be random variables for the partially observed features
and missing features of X, respectively, such that X = Xo ∪Xm. Then, we define imputation as an
unsupervised IB as follows:

min
ϕ,θ

Iϕ(Z;X
o)− βIθ(X;Z) (1)

where β ∈ ℜ≥ is a Lagrangian multiplier, and ϕ and θ correspond to learnable parameters that
define probabilistic mappings qϕ(Z|Xo) and qθ(X|Z), respectively.

2.2 Conditional Information Bottleneck Approach to Time Series Imputation

We aim to reconstruct the complete time series x1:T by filling in the missing features from the observed
features xo

1:T . Formally, we seek to generate xm
t from the conditional distribution p(Xm

t |Xo
1:T ).

What makes this problem challenging is that we must account for the underlying temporal dynamics
represented by xo

1:T when imputing missing features xm
t for t ∈ {1, . . . , T}. We can straightforwardly

apply the unsupervised IB described in (1) by minimizing Iϕ(Zt;X
o
1:T ) − βIθ(Xt;Zt) with a

comprehensive encoder (e.g., RNN or Transformer). However, enforcing such strict regularization
constraints on the encoder may lead to a significant loss of information regarding the temporal context
that can be achieved by observations at different time steps. This may cause the imputation of Xm

t at
time step t to heavily rely on the observed features at that particular time point, i.e., Xo

t , rather than
being able to learn from temporal dependencies present in other observations, i.e., Xo

\t. (Figure 1B)
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To tackle this issue, we alleviate the potentially negative consequences of the regularization constraint
by directing our attention to the redundant information of the observed input at time step t when it
is conditioned on its temporal context represented by the remaining observed time series Xo

\t. This
offers a novel information-theoretic rationale for time series imputation, as defined below:
Definition 2. (Time Series Imputation) Let Xo

t and Xm
t be random variables for the partially

observed features and missing features of Xt at time step t. Then, given the observed time series
input Xo

1:T , we define time series imputation at time step t as an unsupervised CIB as follows:

min
ϕ,θ

Iϕ(Zt;X
o
t |Xo

\t)︸ ︷︷ ︸
Conditional Regularization

−βIθ(Xt;Zt)︸ ︷︷ ︸
Reconstruction

(2)

where Xo
\t represents the random variables for the remaining input observations, excluding Xo

t .

By conditioning on Xo
\t, (2) guides us to find latent representations Zt and the corresponding inference

model parameter ϕ which encompass all retrievable information from the entire observed time series
Xo

1:T (reconstruction), while discarding information that is redundant for capturing Xm
t given the

available temporal context from the remaining observed time steps Xo
\t (conditional regularization).

Overall, the proposed objective in (2) enables us to more effectively utilize information from Xo
\t for

imputing Xm
t compared to other IB-related alternatives (see Figure 1A for conceptual illustration).

2.3 Deep Variational Conditional Information Bottleneck on Time Series

In this subsection, we transform (2) into a learnable form by utilizing variational decomposition.

2.3.1 Maximizing Reconstruction: min
ϕ,θ

−I(Xt;Zt)

Following the derivations introduced in [19], we can find a lower bound of the reconstruction term:

Iθ(Xt;Zt) ≥ Exo
1:T∼pdata

[
Ezt∼qϕ(zt|xo

1:T ) [log pθ(xt|zt)]
]

def
= −L1

ϕ,θ (3)

Here, we introduce a feature estimator pθ(Xt|Zt), as a variational approximation of p(Xt|Zt). We
model the feature estimator as an isotropic Gaussian, i.e., pθ(Xt|Zt) = N (µθ(Zt), diag(σθ(Zt)))
where µθ(·) and σθ(·) are implemented by neural networks parameterized by θ.

2.3.2 Minimizing Conditional Regularization: min
ϕ,θ

Iϕ(Zt;X
o
t |Xo

\t)

We employ the chain rule for mutual information on the conditional regularization term as follows:

min
ϕ,θ

I(Zt;X
o
t |Xo

\t) = min
ϕ,θ

I(Zt;X
o
1:T )− I(Zt;X

o
\t). (4)

It is worth highlighting that the application of the chain rule decomposes the conditional regularization
into two components: (i) minimizing the information between the latent representation Zt and the
entire observed time series input Xo

1:T that encourages the latent representation to be concise, while
(ii) maximizing the information from Xo

\t to capture the underlying temporal dynamics provided by
the observations at the remaining time steps. This prevents a significant loss of temporal context in
the IB and, in turn, enhances the utilization of temporal dependencies from the remaining time steps.

Minimizing I(Zt;X
o
1:T ) The first term in (4) can be bounded as follows (see Appendix B):

I(Zt;X
o
1:T ) ≤ Exo

1:T∼pdata [DKL(qϕ(zt|xo
1:T )||p(zt))] def

= L2
ϕ (5)

where we utilize the unit isotropic Gaussian as the prior distribution, i.e., p(Zt) = N (0, I). We
model the stochastic encoder as a multivariate Gaussian distribution defined as qϕ(Zt|Xo

1:T ) =
N (µϕ(X

o
1:T ), diag(σϕ(X

o
1:T ))), where µϕ(·) and σϕ(·) are neural networks parameterized by ϕ.
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Maximizing I(Zt;X
o
\t) To bound the second term in (4), we adopt the InfoNCE minimization

from the contrastive learning on latent representations that approximately achieves maximizing the
corresponding mutual information [11, 17]. We define our novel contrastive learning loss with cosine
similarity of latent representations along the time axis as follows (see Appendix C for derivation):

I(Zt;X
o
\t) ≥ Exo

1:T∼pdata

log


∑
t′∈{1,...,T}\t

ct,t′ exp
(
zt

T z̃t′/τ
)

∑
x−
1:T∈X−

1:T

∑
t′∈{1,...,T}

exp
(
ztT z

−
t′ /τ

)

 def
= −L3

ϕ (6)

where τ is the temperature parameter and ct,t′ is a kernel constant (let ct,t′ = 1 at this stage). Here,
z̃t′ ∼ qϕ(Z̃t′ |xo

\t) denotes the positive pair obtained by masking the reference time series, such that
xo
\t is created by replacing xo

t with zeros from xo
1:T . We regard such positive pairs as augmentations

of a given time series since latent representations with missing values at time step t share task-relevant
information about the underlying temporal dynamics of a given time series. We denote X−

1:T a set
of negative samples comprising other time series in the same mini-batch, where x−

1:T indicates an
observed time series from X−

1:T . This makes our encoder capture time series-level semantics – such
as underlying disease progression patterns that can be distinguished from others – by pushing these
samples from the reference. Such an attribution is necessary for reconstructing missing values (and
associated downstream tasks in the experiments) specific to the input time series.

Injecting Inductive Bias about Temporal Dynamics The alignment of the latent representation
[20], attained through contrastive learning without inductive bias, i.e. ct,t′ = 1 in (6), renders the
similarity between latent representations at two adjacent time points indistinguishable from the
similarity between those at two distant time points. This phenomenon appears to contradict real-world
temporal dynamics, such as gradually deteriorating or periodic behavior of disease progression
patterns. To address this, we employ conditional alignment [3] that introduces inductive bias about
the underlying temporal dynamics with temporal Cauchy kernel [13] as the following.

ccauchy(τ, τ
′) = σ2

(
1 + (τ − τ ′)2/l2

)−1
(7)

2.4 Training Objective

We optimize our method based on the following objective by combining all loss functions that allows
us to approximately achieve time series imputation defined in (2): minϕ,θ βL1

ϕ,θ +L2
ϕ + γL3

ϕ, where
γ ∈ R≥0 is a balancing coefficient that trades off the impact of L3

ϕ.

3 Experiments

Evaluation Metrics We evaluate the imputation performance from two perspectives: i) Imputation
performance which measures feature-wise (pixel-wise) reconstruction. Specifically, we assess the
negative log-likelihood (NLL) and mean squared error (MSE) of the imputed values on artificially
missing features. ii) Prediction performance, which indirectly measures how well the imputed values
preserve task-relevant information, which is a crucial aspect of imputation methods in practice.
Following [4], we train separate classifiers with imputed values to predict the target labels. Then, we
evaluate the area under the receiver operating characteristic (AUROC) for classification tasks.

Baseline Models We focus our comparison on VAE-based models since these models can be
interpreted under the IB principle as suggested in [19]. Moreover, these multiple imputation methods
can provide uncertainty of the imputed values, which is often crucial to support decision-making
processes such as clinical interventions in healthcare. Hence, for baseline models, we compare our
proposed method with the following: i) GP-VAE [4] which utilizes the Gaussian process (GP) prior
to model time dependency, ii) HI-VAE [10] and iii) VAE [8], both of which use an autoencoder
architecture and are capable of imputing values at each time step. Note that our model inherits VAE
architecture - number of parameters used in encoders and decoders are identical with HI-VAE and
VAE; GP-VAE only differs by dimension-wise stochastic encoder. To compare with non-probabilistic
model, we also compared with RNN-based BRITS [1] and Transformer-based SAITS [2]. For a fair
comparison, the magnitude of the number of parameters is the same among deep learning methods.
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Table 1: Imputation and prediction performance on the image sequence datasets.
Methods HealingMNIST (missing with MNAR pattern) RotatedMNIST (interpolation & extrapolation)

NLL(↓) MSE(↓) AUROC(↑) NLL(↓) MSE(↓)
No Imp. - 0.293 ± 0.000 0.920 ± 0.000 - 0.133 ± 0.000
Mean Imp. - 0.168 ± 0.000 0.938 ± 0.000 - 0.085 ± 0.000
Forward Imp. - 0.177 ± 0.000 0.946 ± 0.000 - 0.080 ± 0.000
VAE 0.480 ± 0.002 0.232 ± 0.000 0.922 ± 0.000 1.773 ± 0.127 0.133 ± 0.000
HI-VAE 0.290 ± 0.001 0.134 ± 0.003 0.962 ± 0.001 0.207 ± 0.007 0.087 ± 0.001
GP-VAE 0.261 ± 0.001 0.114 ± 0.002 0.960 ± 0.002 0.190 ± 0.001 0.080 ± 0.004
Ours(Uniform) 0.204 ± 0.002 0.090 ± 0.001 0.967 ± 0.001 0.184 ± 0.001 0.077 ± 0.001
Ours(Cauchy) 0.202 ± 0.004 0.088 ± 0.002 0.967 ± 0.000 0.184 ± 0.001 0.076 ± 0.002

Figure 2: Selected imputation results on Physionet2012.

Imputation on image sequences. To evaluate our model on healthcare-inspired missing scenarios,
we assess imputation performance on two MNIST sequence benchmarks. HealingMNIST [9] has
approximately 60% of missing pixels under a missing-not-at-random (MNAR) pattern on every
time step, where the missing probability of white pixels is twice larger than that of black pixels.
Given that the model is not provided with information about the underlying missing mechanism, this
task is particularly challenging, yet it mirrors many practical scenarios. For example, in healthcare,
patients with depression are more likely to refuse answers about the severity of their condition [5].
RotatedMNIST [12] evaluates performance on interpolation and extrapolation, where all features
at an arbitrary time step are completely missing. This makes imputation more challenging since
the model must reconstruct all the missing values at a given time step solely based on the temporal
dependency. Table 1 demonstrates that our model provides state-of-the-art imputation and prediction
performance on both datasets, and Cauchy kernel (7) can further improve the performance.

Table 2: Imputation and prediction performance on
the clinical dataset.
Methods Physionet2012 (mortality prediction)

NLL(↓) MSE(↓) AUROC(↑)
No Imp. - 0.962 ± 0.000 0.692 ± 0.000
Mean Imp. - 0.511 ± 0.000 0.703 ± 0.000
Forward Imp. - 0.613 ± 0.000 0.710 ± 0.000
BRITS - 0.529 ± 0.004 0.700 ± 0.005
SAITS - 0.501 ± 0.024 0.713 ± 0.007
VAE 1.400 ± 0.000 0.962 ± 0.000 0.691 ± 0.001
HI-VAE 1.345 ± 0.009 0.852 ± 0.018 0.696 ± 0.004
GP-VAE 1.227 ± 0.007 0.616 ± 0.013 0.730 ± 0.006
Ours(Uniform) 1.183 ± 0.007 0.528 ± 0.014 0.744 ± 0.009
Ours(Cauchy) 1.179 ± 0.006 0.521 ± 0.012 0.744 ± 0.009

Imputation for electrical health records.
To evaluate on real-world healthcare data,
we use Physionet2012 – Mortality Predic-
tion Challenge [14], which aims to predict
in-hospital mortality of intensive care unit
(ICU) patients from 48 hours of records with
roughly 80% of missing features. Further-
more, we conduct additional evaluations to
assess whether the imputation methods pre-
serve the critical characteristics of a given
time series – i.e., whether a patient’s status
is deteriorating or not – after replacing the
missing features with imputed values. Table
2 shows that ours provides imputation performance comparable to the best benchmark while outper-
forming the VAE-based methods by a great margin. Furthermore, it achieves the best classification
performance, successfully capturing information about the temporal dynamics of patients’ status.
Note that while the SAITS provides the best imputation performance, the imputed values lose the
crucial information for discriminating patient’s status. We provide qualitative examples comparing
with HIVAE and GPVAE, in Figure 2

4 Conclusion
In this paper, we presented a novel information-theoretic approach for clinical time series imputation.
CIB addresses the limitation of the IB in capturing underlying temporal dynamics by replacing
conventional regularization with conditional regularization. Our empirical results on healthcare-
inspired image sequences and electrical health records prove that CIB is effective in practical cases.
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A Information Bottleneck on Supervised Tasks.

Let X and Y be random variables for the input feature and the target label, respectively. The IB
principle aims to find the bottleneck random variable Z that compresses the information in X while
keeping the information relevant for predicting Y as the following [18],

min
ϕ,θ

Iϕ(Z;X)− βIθ(Y;Z) (8)

where β ∈ ℜ is a Lagrangian multiplier that balances the two mutual information terms, and ϕ
and θ correspond to learnable parameters that define probabilistic mappings qϕ(Z|X) and qθ(Y|Z),
respectively. The core motivation of (8) is to find the optimal distribution of latent representation Z
and the corresponding inference model parameters ϕ that removes label-irrelevant information from
X while preserving the information about the class label Y.

B Variational Approximation of First Term in Conditional Regularization.

I(Zt;X
o
1:T ) = Eqϕ(zt,xo

1:T )

[
log

qϕ(x
o
1:T , zt)

qϕ(zt)pdata(xo
1:T )

]
= Eqϕ(zt,xo

1:T )

[
log

qϕ(zt|xo
1:T )

qϕ(zt)

p(zt)

p(zt)

]
= Eqϕ(zt,xo

1:T )

[
log

qϕ(zt|xo
1:T )

p(zt)

]
+ Eqϕ(zt,xo

1:T )

[
log

p(zt)

qϕ(zt)

]
= Epdata(xo

1:T ) [DKL(qϕ(zt|xo
1:T )||p(zt))]−DKL(qϕ(zt)||p(zt))

≤ Epdata(xo
1:T ) [DKL(qϕ(zt|xo

1:T )||p(zt))]

(9)

The last inequality holds because of the non-negativity of KL-divergence.
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C Contrastive Approximation of Second Term in Conditional Regularization.

In Section 2.3.2, we optimize I(Zt;X
o
\t) by approximate the mutual information into a contrastive

form, which is similar to [11, 17].

I(Zt;X
o
\t) = −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

]

= −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

N

]
+ log(N)

≥ −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

N

]

≥ −EX log

[
1 +

p(Xo
\t)

p(Xo
\t|Zt)

(N − 1)

]

= −EX log

[
1 +

p(Xo
\t)

p(Xo
\t|Zt)

(N − 1)EXo,j
\t

p(Xo,j
\t |Zt)

Xo,j
\t

]

≈ −EX log

1 + p(Xo
\t)

p(Xo
\t|Zt)

∑
X−

\t∈X−

p(X−
\t|Zt)

p(X−
\t)



= EX log


p(Xo

\t|Zt)

p(Xo
\t)

p(Xo
\t|Zt)

p(Xo
\t)

+
∑

X−
\t∈X−

p(X−
\t|Zt)

p(X−
\t)


≈ EX log

 p(Xo
\t|Zt)

p(Xo
\t)∑

X−
1:T∈X−

p(X−
1:T |Zt)

p(X−
1:T )


= EX log

[
f(Zt,X

o
\t)∑

X−
1:T∈X− f(Zt,X

−
1:T )

]

(10)

There remain two design choices: i) selection of X− and ii) formulation of function f . For i), we use
a mini-batch approach that X−

1:T are chosen from other time series inputs in the same mini-batch.
For ii), we adopt the average of cosine similarities along the time axis. Specifically, we define the
function f using an alternative representations Z̃t′ which is obtained by inputting the masked input
qϕ(Z̃t′ |Xo

\t) where τ ∈ ℜ is a temperature hyperparameter:

f(Zt,X
o
\t) =

∑
t′∈{1:T}\t

f(Zt, Z̃t′) =
∑

t′∈{1:T}\t

exp
(
Zt

T Z̃t′/τ
)

(11)

Alternatively, we can also define the function for negative samples in a similar way.

f(Zt,X
−
1:T ) =

∑
t′∈{1:T}

f(Zt,Z
−
t′ ) =

∑
t′∈{1:T}

exp
(
Zt

TZ−
t′ /τ

)
(12)

Then I(Zt;X
o
\t) is lower bounded by

I(Zt;X
o
\t) ≥ log


∑

t′∈{1:T}\t
exp

(
Zt

T Z̃t′/τ
)

∑
X−

1:T∈X−
1:T

∑
t′∈{1:T}

exp
(
Zt

TZ−
t′ /τ

)
 (13)

We can observe that I(Zt;X
o
\t) is lower bounded by the similar form of NT-Xent objective function

in [15] and specifically in-version of the supervised contrastive loss in [7].
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